Orthotropic material properties of the gerbil basilar membrane.

نویسندگان

  • Shuangqin Liu
  • Robert D White
چکیده

In this paper, two sets of experimental results to extract the two effective elastic moduli, the effective shear modulus, and the effective Poisson's ratio for the gerbil cochlear partition are analyzed. In order to accomplish this, a geometrically nonlinear composite orthotropic plate model is employed. The model is used to predict both out-of-plane and in-plane motion of the partition under a static finite area distributed load. This loading condition models the small, but finite size, probe tips used in experiments. Both in-plane and out-of-plane motion are needed for comparison with recent experimental results. It is shown that the spatial decay rate (the space constant) for the in-plane deflection is different than for the out-of-plane deflection, which has a significant effect on the derived partition properties. The size of the probe tip is shown to have little influence on the results. Results are presented for two types of boundary conditions. Orthotropy ratios determined from the experimental data are found to vary with longitudinal position and choice of boundary conditions. Orthotropy ratios (the ratio of the two elastic moduli) are in the range of 65 close to the base to 10 in the upper middle turn of the cochlea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracochlear pressure and derived quantities from a three-dimensional model.

Intracochlear pressure is calculated from a physiologically based, three-dimensional gerbil cochlea model. Olson [J. Acoust. Soc. Am. 103, 3445-3463 (1998); 110, 349-367 (2001)] measured gerbil intracochlear pressure and provided approximations for the following derived quantities: (1) basilar membrane velocity, (2) pressure across the organ of Corti, and (3) partition impedance. The objective ...

متن کامل

Stiffness of the gerbil basilar membrane: radial and longitudinal variations.

Experimental data on the mechanical properties of the tissues of the mammalian cochlea are essential for understanding the frequency- and location-dependent motion patterns that result in response to incoming sound waves. Within the cochlea, sound-induced vibrations are transduced into neural activity by the organ of Corti, the gross motion of which is dependent on the motion of the underlying ...

متن کامل

In vivo measurement of basilar membrane stiffness.

Basilar membrane stiffness measurements were made in the base of the gerbil cochlea. Basilar membrane stiffness was determined by contacting the basilar membrane with a stainless steel needle (tip diameter 25 microns) attached to a force transducer, putting the needle/transducer structure through a low-frequency sinusoidal excursion with amplitude 5 or 25 nm, and measuring the restoring force e...

متن کامل

Response suppression and transient behavior in a nonlinear active cochlear model with feed-forward

A nonlinear active cochlear model is used to simulate the steady-state frequency response and transient response to clicks of the basilar membrane. The model includes the three-dimensional viscous fluid effects, an orthotropic cochlear partition with dimensional and material property variation along its length, and a nonlinear active feed-forward mechanism to represent the activity of the outer...

متن کامل

Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions

To understand how the inner ear-generated sound, i.e., otoacoustic emission, exits the cochlea, we created a sound source electrically in the second turn and measured basilar membrane vibrations at two longitudinal locations in the first turn in living gerbil cochleae using a laser interferometer. For a given longitudinal location, electrically evoked basilar membrane vibrations showed the same...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 123 4  شماره 

صفحات  -

تاریخ انتشار 2008